Wave operators for dilation-analytic three-body Hamiltonians

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eckart frame Hamiltonians in the three-body problem

A. V. Meremianin∗ Department of General Physics, Voronezh State University, 394006, Voronezh, Russia (ΩDated: February 22, 2013) Abstract The Eckart frame is used to separate out the collective rotations in the quantum three-body problem. Explicit expressions for the corresponding rotational and vibro-rotational (i.e. Coriolis) Hamiltonians are derived. Special attention is paid to the situatio...

متن کامل

A Dilation Theory for Polynomially Bounded Operators

In this paper we construct a special sort of dilation for an arbitrary polynomially bounded operator. This enables us to show that the problem whether every polynomially bounded operator is similar to a contraction can be reduced to a subclass of it.

متن کامل

Universitet Analytic structure of many - body Coulombic wave functions

We investigate the analytic structure of solutions of non-relativistic Schrödinger equations describing Coulombic manyparticle systems. We prove the following: Let ψ(x) with x = (x1, . . . , xN ) ∈ R denote an N -electron wavefunction of such a system with one nucleus fixed at the origin. Then in a neighbourhood of a coalescence point, for which x1 = 0 and the other electron coordinates do not ...

متن کامل

Three-Body Dynamics with Gravitational Wave Emission

We present numerical three-body experiments that include the effects of gravitational radiation reaction by using equations of motion that include the 2.5-order post-Newtonian force terms, which are the leading-order terms of energy loss from gravitational waves. We simulate binary-single interactions and show that close-approach cross sections for three 1 M objects are unchanged from the purel...

متن کامل

Metric Operators for Quasi-Hermitian Hamiltonians and Symmetries of Equivalent Hermitian Hamiltonians

We give a simple proof of the fact that every diagonalizable operator that has a real spectrum is quasi-Hermitian and show how the metric operators associated with a quasiHermitian Hamiltonian are related to the symmetry generators of an equivalent Hermitian Hamiltonian. PACS number: 03.65.-w

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1988

ISSN: 0022-1236

DOI: 10.1016/0022-1236(88)90105-x